

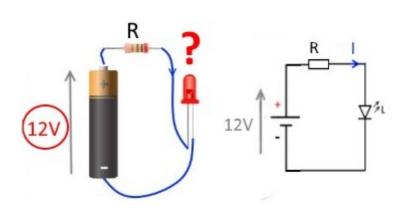
G randeurs électriques - utilisation du multimètre - loi d'Ohm - loi des nœuds - loi des mailles

Exercices sur : les grandeurs électriques

Nom:	Appréciation :	Note:
Prénom :		
Classe:		100
Date :		/20

Objectif: tu trouveras ici plusieurs exercices pour mettre en application ce que tu as durée: 4h

appris dans la leçon


Matériel: alimentation de laboratoire – multimètre – plaque labdec – composants électroniques

Compétences et savoirs principalement visées :

Travail à réaliser :

Schéma du système :

Septembre 2017 -Tous droit réservés – Stéphane YOVOGAN, Christophe VARDON

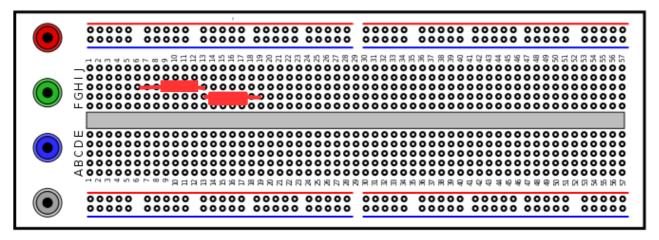
Exercice 1 : tu vas faire une série de tests sur les résistances et leur valeur (qui se mesure en Ohms) !!

A Savoir : il y a 2 façons de connaître la valeur d'une résistance en Ohms (Ω)

- 1) utiliser les anneaux de couleurs peints dessus
- 2) la mesurer avec le multimètre
 - rechercher sur internet le code des couleurs; en déduire la valeur de la résistance fournie

$$R = \Omega$$

utiliser le multimètre pour mesurer la valeur de cette résistance


$$R = \underline{\hspace{1cm}} \Omega$$

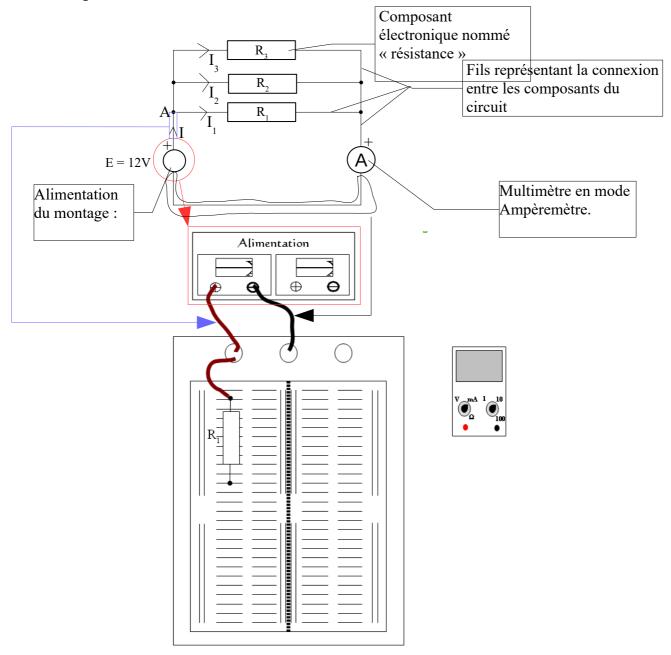
- si les 2 valeurs sont très différentes : tu as fait une erreur; recherche et corrige
- si les 2 valeurs sont proches : c'est bon !

Sais tu pourquoi la valeur mesurée et la valeur calculée avec le code des couleurs ne sont pas exactement égales ?

- Mesure chacune des 2 résistances fournies : R1 = Ω , R2 = Ω
- Sur la plaque Labdec, relie les 2 résistances de la façon suivante :

Mesure la résistance totale formée par les 2 résistances en série :

$$R_{mes}$$
 = _____ Ω


Calcule la somme R = R1+R2 :

$$R_{calc} = \underline{\qquad} \Omega$$

Compare les 2 résultats précédents : que remarques tu ?

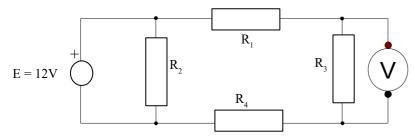
Exercice 2: courant et tensions

- 1 Mesurer chaque résistance présente dans la boîte rouge et les trier par valeur.
- 2 Sur la feuille et avec le début déjà dessiné sur cette page, dessiner le schéma de câblage du montage suivant.

3 Réaliser le câblage sur platine d'essai avec $R1=R2=R3=2,2k\Omega$. Ne pas mettre sous tension

Régler la tension de l'alimentation à 12V, faire vérifier le montage par le professeur, puis effectuer la mesure.

I =


4 Effectuer la mesure du courant traversant chaque élément passif et complétez le tableau suivant avec les unités correspondantes :

éléments	R ₁	R ₂	R ₃
Intensité de courant	I ₁ =	I ₂ =	I ₃ =

- Vérifier par le calcul qu'au nœud A, $I = I_1 + I_2 + I_3$

6 Éteindre l'alimentation.

7 Sur la feuille, dessiner le schéma de câblage du schéma électrique suivant :

- Réaliser le montage (l'alimentation doit être éteinte) avec $R1=R2=R3=2,2k\Omega$ et $R4=3,3k\Omega$, faire valider par le professeur, puis effectuer la mesure. $U_{R3}=$

9 Effectuer la mesure des différences de potentiels (DDP) aux bornes des autres éléments, puis compléter le tableau de mesures avec les unités correspondantes :

éléments	R ₁	R ₂	R ₃	R ₄
DDP	U _{R1} =	U _{R2} =	U _{R3} =	U _{R4} =